Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

or(x, x) → x
and(x, x) → x
not(not(x)) → x
not(and(x, y)) → or(not(x), not(y))
not(or(x, y)) → and(not(x), not(y))

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

or(x, x) → x
and(x, x) → x
not(not(x)) → x
not(and(x, y)) → or(not(x), not(y))
not(or(x, y)) → and(not(x), not(y))

Q is empty.

We use [23] with the following order to prove termination.

Recursive path order with status [2].
Quasi-Precedence:
not1 > [or2, and2]

Status:
and2: multiset
or2: multiset
not1: multiset